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Model equations are derived for collective degrees of freedom, i. e, Fourier am- 
plitudes of velocity field summated over the wave number octave (the wave num- 
ber modulus changes twice within the octave). Stationary solutions of these equa- 
tions which in the related inertial intervals yield the laws of similarity are analyzed 
(k-‘~s in a three-dimensioM1 turbulence and It-3 in a two-dimensional one). Non- 

stationary problems of forming cascade processes were numerically investigated 

in [Il. 
Simulation of cascade processes of energy transmission, vorticity, nonuniform 

concentration of admixtures is of particular interest in investigations of turbulent 
flows by the spectrum of turbulent motions. Cascade processes determine the in- 

ner structure of flows and the mechanism of turbulent dissipation. In the last few 
years it has been possible to simulate on a computer a two-dimensional space- 
periodicflow of not very high viscosity and to obtain a section of the energy spect- 

rum E (k) - km3 [2--51 which corresponds to the cascade process of vorticity 
transfer [2, 61. The authors are aware of only one publication v] on numerical 
simulation of three-dimensional periodic flows, where the Reynolds numbers were 
not sufficiently high for the investigation of the cascade energy transmission pro- 
cess and obtaining a section of the spectrum governed by the “law of 5/3*‘. 
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Besides the refinement of numerical tests with a considerable number of dew 
grees of freedom, it is expedient to develop methods for reducing the number of 
these without im~nding the realization of cascade processes. One of such me- 

thods is proposed below. 

1, Model of crrcrds procoa~a. Let us consider a space-periodic stream 
of incompatible viscous fluid, The Navier-Stokes equations for the Fourier components 
of the velocity field are of the form 

al;. (k) 
- = - i @%--JCj~,~-2) Ire, 2 r+ (P) V, (k - p)--vk2ui (k) -+- Fi (k) at (1.1) 

P 

kiui(k) = 0, Uj” (k) = Vi (- k) 0.2) 

where kj are wave vector components whose values are 2nL-hj (L is the space period 

and nj are integers), Sj, is the Kronecker delta, Fj (k) are Fourier components of the 
external force field, and (1.2) define the conditions of solenoidality and reality ofthe velo- 

city field,which are also satisfied by the field of forces Fj (kj. The twice repeated subscripts 

denote summation from unity to the number of measurements s = 2.3. The term con- 

taining pressure is expressed in terms of velocity by using (1.2). The nonlinear term in 
the right-hand part of (1.1) defines the exchange of energy between motions of different 

scales. It presents considerable difficulties in numerical simulation. The quadratic char- 
acter of nonlinearity has the effect of doubling the wave number, which is the essence 
of cascade processes. If at the initial instant of time the wave packet has k cu k,, then 
harmonics with k cu k,2i-1 i = 2, 3,... will subsequently appear, 

Let us introduce_Fourier amnlitudes ofthevelocity field summated over the octave of 
wave numbers jf2 k / 2 Q Ik’ ) Q j-6 k (subsequently this is denoted by a zero super- 
script at the summation symbol) 

us (k) = <x* ui (k’) q (- k’j) 

where angle brackets denote the probable averaging over the set of realizations. 
From (1, I) and (1.2) we have 

u(k)%$=(~‘[- ik,‘r,v,(-k’)v,(p)v,(k’-p) - (1.3) 
D 

Y (k’)2 q (k’) ul (- k’) 4 i (k’) q (- k’,]> 

Since terms containing p c\;, k / 2 and p cu 2k play the main part in the forma- 
tion of a cascade process, it is possible to approximate the first term in the right-hand 

part of (I. 3) by the expression 

cc,ku (k) uz (k / 2) - &,kzP (k) u (2k) 

where w8, Es (s = 2,s) are dimensionless constants. The condition of conservation 
(for Y = 0 and Fj = 0) of the quantity 

Iwo =; +~k”W(k) 
k 

(1.4) 

where summation is for k = k12i-1, i = 1, 2,. . .) , yields 

ijc$) = 21+ma(,m) 
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The case of m = 0 relates to the conservation of energy’ (s = 2,3) and m = 2 to 
the conservation of the square of the vortex (s = 2). Since in a three-dimensional flow 
energy is transferred from large to small scales, hence &to) > 0. The same can be said 

about the transfer of vorticity in a two-dimensional flow, hence rxs@) > 0. In a two- 
dimensional flow the energy is, however, transferred from small to large scales [6, 81, 

Thus c&j”) < 0, 

Using notation 

<x0 (K)z uz (k’) u1 (- k’)> = p (k) k2ua (k) 

<x0 J’, W) ui t-- k’,> = = (k) F (k) 

we obtain the following equation : 

-z a$“‘k ~2 3~ 6’4 
at [ (+) - 21+‘%4 (k) u (2k)] - VP (k) kzu (k) + F(k) (1.5) 

If h> 1 is substituted for 2 as the module of scale changes and the summation in(l.4) 
is understood to be for ki = klhi-l, i = 1, 2,. . . , then (1.5) changes to ( *) 

hl+mu (k) u (kh)] - $3 (k) k% (k) -j- P(k) CL61 

2. The rtationary rfmilsrity mode, For a stabilized mode in the inertial 
interval of wave numbers (where the effect of viscosity and external energy sources is 

negligible) Eq. (1.6) assumes the form 

u2(kh-l) = hl+m u (k) u (kh) (2.1) 

This equation has the solution 
n (k) -;= /lim)k-(lsrn)/s (2.2) 

which corresponds to parametric similarity with the determining parameter 

e(,m) = o~~m)~+mU2 (j&-l)u(k) r=; ~~~)(~~m))3~z(1~~)/3 (2.3) 

where e,(O) is the stream of energy over the spectrum (s = 2, 3) and e,(s) is thestream 
of enstrophy (equal to half the mean square of the vortex). 

According to Sect. 5 of Novi,kov’s dissertation (see footnote) statisiicai characteristics 
of field v (k) in parametric similarity are invariant under transformations of the form 

h”v (hk) =: v (k) 

where the arrows denote the statistical equivalence of fields, h is an arbitrary number, 
and pi is the index of parametric similarity related to the dimension ofthe determining 

parameter x by 
G=bfa, [xl = [VI” [klb 

3 This model of cascade processes was proposed by E, A. Novllrov in a paper presented at 
the seminar of the L. D. Landau Institute of Theoretical Physics of the AS USSR in 1970 
in connection with the theory of parameteric and scale similarity (see E.A.Novikov, Stati- 
stical models in the theory of turbulence. Doctoral dissertation, Moscow, 1969 and [9]). 
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For. x = es@@ from (2.3) we have 

a = 3, b=il_m, a=(l+m)/3 

From the relationship 
k h’iz 

w9=2 1 E (Ic,) dk, 

kh-% 

and (2.2) and (2.3) for the spectral density of kinetic energy we obtain 

E (k) = Bj$-(5+2W/s (2.4) 

B= AZ (1 + 4 E"' (1 + M} 
3 (/pW3 _ ~-4lWl3) = 32Ys~~l+m~/s~~2~l+m), 34) (2.5) 

where subscripts at B, A, E, cc are omitted. 
In the considered here inertial interval of wave numbers it is possible to use the sim- 

mer relationship . 
6k = k (h’iz _ ,&-’ 2) (2.6) 

which differs from (2.4) and (2.5) by a factor which for h = 2 and 112 = 0, 2 is close 

to unity, 
For rrz = 0 Eqs. (2.4) and (2.5) yield the “law of 5/3 ” (for the reconciliation ofthe 

constant in the energy spectrum with experimental data it is necessary to set a,(O) G 0.2) 

and for m = 2 the “law of 3”. 

Equation (2.1) admits the more general solution 

u (k) = A’k+lfm)@ gq [C (_ ,)‘*%“] (2.7) 

which for c # 0 does not correspond to parametric similarity. 

Numerical tests carried out by the authors @)show that similarity is obtained in the 
considered model (with increasing number of cascades C -+ 0). It is interesting to in- 

vestigate this problem analytically particularly because such investigation explains sin- 
gularities of the behavior of solutions for another cascade model considered here. 

Let us consider a system consisting of n cascades, and write Eq, (1.6) in the finite- 

dimensional form 1 
uu. 

..-..L = cprci [ui_12 -- 
dt h’+mUiui+l] - $iki%i +. Fi (2.8) 

ui 3 u (k,), ki - kIti-1, i = 1, . . . . n; u. = u,,+~ s 0 

The stationary mode of a cascade model is determined by the presence of sources and 
sinks of energy or vorticity. let us assume, for simplicity’s sake, that the external force 
acts only in the first cascade (*). This force is chosen so that amplitude ur which re- 
presents the external parameter of the problem remains constant. At reasonably high 
Reynolds numbers R = au,k,-lv-l (the estimate is given below) only the last step is 

affected by viscosity, hence it is reasonable to simplify the analysis by setting pi = 0, 
i=I,..., n-land fin= 1. On these assumptions from (2.8) for the stationary 

state we have the system of equations 

*) The case ot s = 2, 1~ = 0 and a < 0, when energy is transmitted from small to 
large scales, can be considered in a similar way. 
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Ui3 = hr+*Ui+lZLi+z, i r-1: 1, . . , n - 2 (2.2) 

&_I = vu-%+, 

We introduce the quantities 

(Pi = + (i - 1) (1 + m) + log, (uiut-i) (2.10) 

which define deviations from the similarity mode. We obtain 

2% = (Pi+1 -t (Pitz, i=l,...n-2 (2.11) 

2%X-, = Yn + fPnt ‘PI = 0 (2.12) 

yn=(4$_rn) n/3-2-m--_tog,R (2.13) 

Setting qr = hi, from (2.11) we obtain 

ha +- h - 2 = 0, h, = 1, A, = -2 

The proof that Cpr = a $ (-2)ib yields the general solution of the equation for the 

recursion relation (2.11) is derived by the method of complete mathematical induction. 
The boundary conditions (2.12) yield 

a=2b= - +fn [(-2y - 11-l 

Finally, we obtain the unique stationary solution of the problem 

Ui = Ulh*, x=-...- (i - 1) im -!- 1) + r* 
3 

(2.14) 

For n -+ 00 and i / n < q < 1 (q is a constant) solution (2.14) converts to the simi- 
larity mode (2.2) with a constant independent of & and determined by (2.3). If R is 

considered as a function of n, then by virtue of (2.13) for the indicated transition to 
limit it is sufficient to specify that the increase of log,R with increasing n must be 
slower than exponential. Such requirement is entirely justified,since for the simulation 

of a turbulent flow it is reasonable to choose the number n of steps on the basis of the 
requirement k% E ,7#-1 2 (l(ym))-l = (e0'0/y-3)lif4+~) ;=: @3/(4+"V (2.15) 

where l’,“’ is the inner scale of turbulence which for m = 0 is the same as the Kolmo- 
gorov inner scale [lo], and for m = 2 as the scale introduced in [2, 67. If equality is 
substituted for the inequality in (2.15), then for maximum R we obtain 

log& 5 i/s (n - 1) (4 -t m) (2.16) 

In that case the effect of viscosity will make itself felt only in the last step, and 7n be- 
comes independent of n. 

The similarity mode for the considered model is in a certain sense stable with respect 
to small-scale perturbations. Disregarding the specific properties of the boundary con- 
ditions (2.12), from (2.11) we directly obtain 

6Q-r = (- ‘/‘Jr hi, 8% = vi+1 - rPi (2.17) 

Thus the deviation from the similarity law in the region of high wave numbers (e, g., 
owing to the viscosity effect) is rapidly attenuated with increasing penetration into the 
region of smaller wave numbers. 
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a. Obukhov'r model, In analyzing the system of equations of the hydrodyna- 
mic kind, Obukhov has investigated in detail the case of the triplet [ll]. He considered 
a system of linked triplets and derived a definite model for the cascade process [12). 

According to the proposed here classification Obukhov had considered the case of m = 0 
and a > 0 (s = 3). Equations of Obukhov’s model, when extended to the case of any 

arbitrary m, are in our notation of the form 

auildt = ski [ui-lui - Iz’+~u~+~~] - vfiiki’ui + Fi (3.1) 
ki = klhi-‘p h> 1, i = 1, . . ., n; ug = u*t1 E 0 

At first glance Eqs. (2.8) and (3. l), derived independently on different considerations, 

are very similar. In the absence of viscosity and external forces Eq. (3.1), as well as 
(2.8) admit a stationary solution which corresponds to the similarity mode (2.2). How- 

ever Eq. (3.1) admits, also, a stationary solution for pi f 0 and Fi s 0 , in which the 

entire energy is concentrated in the first harmonic (~1 # 0 and ui = 0, with i > I), 
while (2.8) has no such solution. Moreover, when external forces do not directly act on 
the small-scale harmonics (Pi zz 0, i > I) , and these harmonics are not excited at the 

initial instant of time (ui (0) = 0,i > 1), then in accordance with (3.1) the energy is not 
transmitted from large-scale harmonics to smallscale harmonics. On the other hand, in 

the model (2.8) small-scale harmonics are excited by large-scale ones. Below We pre- 
sent the analysis which is similar to that given in Sect.2 for that model. 

If in the stationary mode the external force maintains ~1 constant and viscosity affects 
only the last step (on the assumption that un # 0; for U, = 0 and fln_r = 1 the problem 
reduces to that considered in Sect. 2 for model (2.8) by substituting n - r for n) we 
have 

ujui+l = hlcrnUi+zr i = 1, . . +) 76 - 2 (3.2) 
u,_.I = va-‘kn 

Introducing rp; defied by (2. lo), we obtain 

Cpi + ‘pi+1 = ZTi+s, i = I, - s at ?t - 2 

‘PI = 0, 'Pn-1= 77% 

r ,,I= n(4+m)/3-(5+2m)/3-log~R 

Thegeneral solution of (3.3) is of the form 

(3*3) 

(3.4) 

(3.5) 

Having determined al and 61 by the boundary conditions (3,4), we finally obtain 

ui = UlhX~, x1 = L @ - ‘) ;m + 1) _+ r,’ 

1 _ (_ ljz)i-l 

1 - (- ‘jp? (3.6) 

Note that Eqs. (3.2) and their extension to the case in which all fli # 0 have a second 
solution which differs by the sign of u,,. For n + CO and r,’ # 0 solution (3.6) does not 
convert to the similarity mode. For i + 00 (3.6) formally yields a regular power de- 
pendence on the wave number, but the proportionality coefficient depends then substan- 

tially on viscosity. 
From (3.3) for Bqz: we obtain 

bC&-r = (-2)‘& 
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Unlike in the case of (2.17) here the small-scale deviations from the stationary simi- 
larity mode increase with penetration into the region of large scales (small wave num- 

bers), It further appears that the stationary solution for model (3.1) in a linear approxi- 
mation is unstable, since the trace of the matrix resulting from such approximation is 
positive [13]. A, B. Glukhovskii and A, B. Karunin came to the same conclusion about 
the instability of the stationary solution for model (3.1). 

Numerical tests carried out by the authors show that the rapidly developing perturba- 

tions in model (3.1) move it away from the similarity mode, 

4, Formal conclulrfon and gsnetalfsstion of model@. Neglecting 
external forces and dissociation, we shall show how models (2.8) and (3.1) and their 
generalization are derived on the basis of the following general requirements : (I) quad- 

ratic properties of nonlinear terms ; (2) scale invariance of dimensionless coefficients 

in the equation ; (3) direct interaction only between closest neighbors in the spectrum 

(an approximation widely used in theoretical physics) ; (4) presence of the quadratic 

integral (1.4). 
It follows from requirements (l)-(3) that 

where a,,. . . , a, are dimensionless coefficients independent of k. 
Condition (4) yields 

Finally we obtain 

a* = ark [r&2 (W’) - hr*% (#%) u (kh)j + 

ask [u (kh-l) u (k) - hlemu2 (kh)] 

(4.1) 

The derived equation has the stationary solution (2.2) which corresponds to the simi- 

larity mode. For 6% = 0 from (4.1) we obtain model (1.6), (2.8). and for a1 = 0 
model (3.1). The first model converts to the second for the transformation 

h -+ h-l, t 3 -hl+mt 

i. e, for the reflection of scale change and of time. Neglecting the limitation (3) it 

becomes possible to obtain a more general class of models which are considered in fl4]. 
To this more general class belongs, in particular, the model recently described in 1153. 

However numerical tests carried out by the authors show that in this model similarity 
modes do not obtain. 
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ST~TUM UNDER CATIONS OF RADIAL SY~~RY 
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A central borehole in a circular stratum whose permeability depends only on the 

radius is considered. The permeability coefficient is determined by the flow rate 
and the pressure in the borehole with constant pressure at the contour of the lat- 
ter, The problem of determination of the permeability coefficient reduces to 

the restitution of the Sturm-Liouville operator over its spectral function. Nomi- 
nal correctness of the problem is proved in the case in which the permeability 
coefficient belongs to the class of bounded positive functions with bounded first 
and second derivatives. 


